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1 Introduction

Let n be a fixed integer and X1, X2, . . . , Xn be independent real–valued ran-
dom variables with distribution function F . Let Fn be the empirical dis-
tribution function Fn(t) = 1

n

∑n
i=1 1{Xi≤t} (here 1C is the indicator func-

tion of the set C) and, with F an hypothesized distribution, let Yn(t) =√
n(Fn(t)−F (t)), t ∈ T , be the empirical process evaluated at a set of points

T ⊂ R. The covariance of the empirical process takes the form E[Yn(t)Yn(s)] =
F (t)(1 − F (s)) for t ≤ s (see eg. van der Vaart and Wellner (1996), Shorack
and Wellner (2009)).

Certain functions of Fn − F correspond to familiar test statistics. Indeed,
the maximum of the absolute value is the Kolmogorov–Smirnov test statistic,
the average square is the Cramer–Von Mises test statistic, and the average
square with marginal standardization using the variance function F (t)(1 −
F (t)) produces the Anderson-Darling statistics (average with the distribution
F ) (see Anderson (1952)). These statistics use the whole empirical process
with T = R.

For finite T , let V denote the corresponding symmetric covariance matrix
of the column vector

√
n(Fn−F ) with entries

√
n(Fn(t)−F (t)), t ∈ T . Finite T

counterparts to the Kolmogorov–Smirnov, Cramer–Von Mises, and Anderson-
Darling statistics have been considered in Henze (1996) and Choulakian et al.
(1994). In particular, a finite T counterpart to the Anderson–Darling statistic
is n(Fn − F )T (Diag(V ))−1(Fn − F ), which uses only the diagonal entries of
V .

Here we focus on the complete standardization of the empirical distribution
restricted to T = {t1, . . . , tk} leading to the squared distance

n(Fn − F )TV −1(Fn − F ) (1)

and to estimation procedures that minimize it. This quadratic form is the
squared Mahalanobis distance between the vectors Fn and F . The motivation,
familiar from regression, is that the complete standardization produces more
efficient estimators.

Such estimators are usually named “weighted least squares” (e.g. Swain et
al. (1988)) or “generalized least squares” (e.g. Benšić (2014), Benšić (2015)).
However, as we shall see, the tridiagonal form of the matrix V −1 (see e.g.
Barrett (1978), Barrett (1979)) puts them in the minimum chi-square context.
Indeed, the norm square of the standardized empirical distribution given in
expression (1) is in fact equal to the chi-square statistic

n
∑
A∈π

(Pn(A) − P (A))2

P (A)
, (2)

where π is the partition of R into the k + 1 intervals Aj , j = 1, . . . , k + 1,
formed by consecutive values T = {t1, . . . , tk} with t1 < t2 < · · · < tk, where
A1 = (−∞, t1], A2 = (t1, t2], . . . , Ak = (tk−1, tk] and Ak+1 = (tk, ∞). Here
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Pn(Aj) = Fn(tj)−Fn(tj−1) = 1
n

∑n
i=1 1{Xi∈Aj} and P (Aj) = F (tj) −F (tj−1)

with F (−∞) = Fn(−∞) = 0 and F (∞) = Fn(∞) = 1.
We provide a simple explicit standardization. Indeed (1) and (2) are shown

to be equal to the sum of squares
k∑

j=1
Z2

j (3)

of convenient choice of uncorrelated zero mean and unit variance random vari-
ables Zj which are proportional to

Fn(tj+1)F (tj) − F (tj+1)Fn(tj).

As we shall show, the equivalence of the formulas (1), (2) and (3) holds also
for the case of random sets T with cut-points based on empirical quantiles.
This extends and amplifies a result credited to Kulldorff in Hartley and Pfaf-
fenberger (1972) showing equivalence of analogous expressions (1) and (2) in
the empirical quantile case.

In this note we address the relationship between the standardized cumula-
tive distribution and the chi-square statistic by using the tridiagonal form of
the matrix V −1 as well as the projection perspective. It enables us to give the
uncorrelated components of the chi-square statistic and to discuss asymptotic
properties of the estimators that minimize (1) for random and fixed choices of
points in the finite set T .

In Section 2 we explain the framework which we use in this note. In Sec-
tion 3 we address two ways in which the relationship between the standardized
cumulative distribution and the chi-square statistic can be seen. In Section 4
we present uncorrelated components of the chi-square statistic and provide in-
terpretation of these components as innovations standardizing the cumulative
distribution values.

In the last section we discuss a difference in large sample properties for
estimators that minimize (1) for fixed and random choices of points in T .
Some of these estimators have interpretation as regression procedures based
on discrepencies between the empirical distribution function and its theoretical
counterpart. Minimizing (1) is often used for estimating distributional param-
eters. Examples include research concerning parametrized distributions, for
which the maximum likelihood estimate sometimes doesn’t exist. We can find
them in some textbooks (see e.g. Johnson et al. (1994) and Rinne (2009)) as
well as scientific papers which discuss and compare different estimation meth-
ods especially in reliability and survival analysis (e.g. Torres (2014), Kundu
(2005), Benšić (2014), Dey (2014) and Bdair (2012)). As they are mainly ap-
plied to continuous distributions, the set of points T in which the empirical
and theoretical distributions will be evaluated is obviously very important.
It is natural to set T to be random using empirical quantiles. That leads
us to the distribution of uniform order statistics and, in case of the distance
(1), to the conventional weighted least squares estimator that seeks to min-
imize the distance between the vector of “uniformized” order statistics and
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the corresponding vector of expected values, proposed by Swain et al. (1988).
However, it was mentioned in Swain et al. (1988), based on practice, that this
method, based on ordered statistics, failed to achieve the quality that had
been expected and they suggested a different weighting matrix in Johnson’s
translation system. In contrast, the fixed choice of T leads us directly to the
classical Pearson minimum chi-square estimator for which best asymptotically
normal (BAN) distribution properties are well known (see e.g. Hsiao (2006)
for its BAN properties and see also Amemiya (1976), Berkson (1949), Berkson
(1980), Bhapkar (1966), Fisher (1924), Taylor (1953) for more about minimum
chi-square estimation). However, the fixed choice is more naturally made with
discrete distributions than with continuous. At the end of the last section we
give an iterative procedure which does produce a BAN estimator through the
minimization of (1) and random T , based on ordered statistics, which can be
naturally applied to continuous distributions.

2 Common Framework

Fix k ∈ N and n ∈ N and let r1, r2, . . . , rk+1 be random variables with sum 1,
let ρ1, ρ2, . . . , ρk+1 be their expectations, and for j ≤ k + 1 let

Rj =
j∑

i=1
ri and Rj =

j∑
i=1

ρi

be their cumulative sums. We are interested in the differences Rj −Rj . Suppose
that there is a constant c = cn such that

Cov(Rj , Rl) = 1
c

Rj(1 − Rl) = 1
c

Vjl (4)

for j ≤ l. Let

R = (R1, . . . , Rk)T and R = (R1, . . . , Rk)T . (5)

In this paper we highlight the relationship between the quadratic forms
(R−R)TV −1(R−R) and

∑k+1
j=1

(rj−ρj)2

ρj
. We show they are equal and exam-

ine properties of ingredients of these statistics by matrix decompositions and
by geometrical projection properties. In particular, we confirm the tridiagonal
form of V −1 and decompose it as V −1 = W TW with W bidiagonal. Further-
more, we show the factor W (R − R) of the quadratic form has uncorrelated
entries proportional to Rj+1Rj − RjRj+1.

We have the following cases for X1, . . . , Xn i.i.d. with distribution function
F .

Case 1: With fixed t1 < · · · < tk and t0 = −∞, tk+1 = ∞ we set

Rj = Fn(tj) = 1
n

n∑
i=1

1{Xi≤tj},
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with expectations Rj = F (tj). These Rj and Rj have increments

rj = Fn(tj) − Fn(tj−1) = Pn(Aj) = 1
n

n∑
i=1

1{Xi∈Aj}

and ρj = F (tj) − F (tj−1) = P (Aj), respectively. Now the covariance is 1/n
times the covariance in a single draw, so the expression (4) holds with c = n.

Case 2: With fixed integers 1 ≤ n1 < n2 < · · · < nk ≤ n and ordered statistics

X(n1) ≤ X(n2) ≤ · · · ≤ X(nk)

we set tj = X(nj) and
Rj = F (X(nj))

with expectation Rj = nj/(n + 1). These have increments rj = P (Aj) and
ρj = (nj − nj−1)/(n + 1). Now, when F is continuous the joint distribution
of the Rj is the Dirichlet distribution of uniform quantiles and the covariance
expression (4) holds for c = n + 2.

In both cases we are examining distribution properties of Rj − Rj . It is
Fn(tj) − F (tj) in Case 1 and F (tj) − Fn(tj)n/(n + 1) in Case 2. Thus, the
difference R− R is a vector of centered cumulative distributions. In Case 1 it
is the centering of the empirical distribution at t1, . . . , tk and in Case 2 it is the
centering of the hypothesized distribution function evaluated at the quantiles
X(n1), X(n2), . . . , X(nk).

3 Relationship between the standardized cumulative distribution
and the chi-square statistic

We have two approaches to appreciating the relationship between the stan-
dardized cumulative distribution and the chi-square statistic. Firstly, we use
matrix calculations to obtain the following identity:

(R − R)TV −1(R − R) =
k+1∑
j=1

(rj − ρj)2

ρj
. (6)

After that, we revisit the matter from the geometrical perspective of orthog-
onal projection.

The first approach uses the form of the covariance matrix

V =


R1(1 − R1) R1(1 − R2) · · · R1(1 − Rk)
R1(1 − R2) R2(1 − R2) · · · R2(1 − Rk)

...
...

...
...

R1(1 − Rk) R2(1 − Rk) · · · Rk(1 − Rk)

 .
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A matrix of this form is said to have the triangle property (Barrett (1978)).
General characterization of the inverses of positive definite symmetric tridi-
agonal matrices (see Barrett (1978) and Barrett (1979)) enable expression of
V −1 in the following tridiagonal form:

V −1 =



1
ρ1

+ 1
ρ2

− 1
ρ2

0 · · · 0 0
− 1

ρ2
1

ρ2
+ 1

ρ3
− 1

ρ3
· · · 0 0

0 − 1
ρ3

1
ρ3

+ 1
ρ4

· · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1

ρk−1
+ 1

ρk
− 1

ρk

0 0 0 · · · − 1
ρk

1
ρk

+ 1
ρk+1


.

Also, as a consequence of the QR decomposition of a symmetric tridiagonal
matrix (see e.g. Bar-On (1997)), we can see that V −1 = W TW , where

W =



− R2√
R1R2ρ2

R1√
R1R2ρ2

0 · · · 0 0

0 − R3√
R2R3ρ3

R2√
R2R3ρ3

· · · 0 0

0 0 − R4√
R3R4ρ4

· · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · − Rk√

Rk−1Rkρk

Rk−1√
Rk−1Rkρk

0 0 0 · · · 0 − 1√
Rkρk+1


.

These forms of the matrices V −1 and W are verified by matrix multiplication:
V −1V = I and V −1 = W TW (see Appendix A).

In order to show the equation (6), note that the non-zero elements of the
matrix V−1 can be written in the following way:

1
ρ1

+ 1
ρ2

= 1
R1

+ 1
R2−R1

, − 1
ρ2

= − 1
R2−R1

,

1
ρ2

+ 1
ρ3

= 1
R2−R1

+ 1
R3−R2

, − 1
ρ3

= − 1
R3−R2

,

...
...

− 1
ρk

= − 1
Rk−Rk−1

, 1
ρk

+ 1
ρk+1

= 1
1−Rk

+ 1
Rk−Rk−1

.

Consequently, observing a number of cancellations in computation of the
quadratic form, we obtain

(R − R)TV −1(R − R) = 1
R1

(R1 − R1)2 + 1
1 − Rk

(Rk − Rk)2

+
k∑

j=2

1
Rj − Rj−1

(Rj−1 − Rj − Rj−1 + Rj)2

=
k+1∑
j=1

(rj − ρj)2

ρj
.
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The equation (6) can be also reached from examination of projection prop-
erties. First note that there is an invertible linear relationship between the
cumulative Rj and individual rj values via

Rj =
j∑

i=1
ri and rj = Rj − Rj−1, j = 1, 2, . . . , k + 1.

Accordingly, we will have the same norm-squares

cn(R − R)TV −1(R − R) and cn(r − ρ)TC−1(r − ρ)

for standardized version of the vectors R and r where C/cn is the covariance
matrix of the vector r with Ci,j = ρiδij − ρiρj . (Here δij = 1{i=j}.) Per
equation (5) these vectors R and R are in Rk with the understanding that
Rk+1 = 1. Likewise we take r and ρ to be vectors in Rk because the value
rk+1 = 1−

∑k
j=1 rj is linearly determined from the others. Correspondingly, V

and C are k ×k covariance matrices. It is known (and easily checked) that the
matrix C−1 has entries (C−1)i,j = 1

ρi
δij − 1

ρk+1
for i, j = 1, 2, . . . , k (matching

the Fisher information of the multinomial) and one finds from this form that
(r − ρ)TC−1(r − ρ) is algebraically the same as

k+1∑
j=1

(rj − ρj)2

ρj

as stated in Neyman (1949). So this is another way to see (6).
Furthermore, using suitable orthogonal vectors one can see how the chi-

square statistic arises as the norm square of the fully standardised cumulative
distributions.

The chi-square value
∑k+1

j=1
(rj−ρj)2

ρj
is the norm square ∥ ξ − u ∥2 of the

difference between the vector with entries ξj = rj√
ρj

and the unit vector u with
entries √

ρj , for j = 1, . . . , k+1. Here we examine the geometry of the situation
in Rk+1. The projection of ξ in the direction of the unit vector u has length
ξTu =

∑k+1
j=1

(
rj√
ρj

) √
ρj equal to 1. The difference ξ − u is the error of this

projection. Work with an orthonormal basis of Rk+1, in which one of the basis
vectors is u (and hence the k other orthonormal vectors are orthogonal to u).
In particular, let q1, q2, . . . , qk and qk+1 = u be any such orthonormal vectors
in Rk+1. The chi-square value ∥ ξ−u ∥2 is the squared length of the projection
of ξ onto the space orthogonal to u, spanned by q1, . . . , qk. So it is given by∑k

j=1 Z2
j where Zj = ξTqj , j = 1, 2, . . . , k, or equivalently Zj = (ξ − u)Tqj .

This sort of analysis is familiar in linear regression theory. A difference
here is that the entries of ξ are not uncorrelated. Nevertheless, the covariance
E(ξ − u)(ξ − u)T reduces to 1

cn
[I − uuT ] since it has entries

E
(rj − ρj)(rl − ρl)√

ρjρl
= 1

cn

ρj1j=l − ρjρl√
ρjρl
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which simplifies to

1
cn

(δjl − √
ρj

√
ρl).

Accordingly, EZjZl = EqT
j (ξ − u)(ξ − u)Tql = 1

cn
qT

j (I − uuT )ql is 1
cn
qT

j ql

equal to 0 for j ̸= l. Thus the Zj are indeed uncorrelated and have constant
variance 1

cn
.

This is a standard way in which we know that the chi-square statistic with
k + 1 cells is a sum of k uncorrelated and standardized random variables (c.f.
Cramer (1946), pages 416-420).

4 A convenient choice of orthogonal vectors

Here we wish to benefit from an explicit choice of the orthonormal vectors
q1, . . . , qk orthogonal to qk+1 = u. We are motivated in this by the analysis
in Stigler (1984). For an i.i.d. sample Y1 . . . Yn from N (µ, σ2), the statistic∑n

j=1(Yj − Ȳn)2 is the sum of squares
∑n

j=2
j−1

j (Yj − Ȳj−1)2 of the inde-
pendent N (0, σ2) innovations (also known as standardized prediction errors)
Zj = Yj−Ȳj−1√

1+1/(j−1)
and, accordingly, this sum of squares is explicitly σ2 times a

chi-square distributed random variable with n − 1 degrees of freedom. These
innovations decorrelate the vector of (Yi − Ȳn) using qj like those below, with
ρi replaced with 1

n . According to Stigler (1984) and Kruskal (1946), analysis
of this type originates with Helmert (1876) (cf. Rao (1973), pp. 182–183).

The analogous choice for our setting is to let Zj = ξTqj , where the
q1, . . . , qk, qk+1 are the normalizations of the following orthogonal vectors in
Rk+1: 

−√
ρ1 −√

ρ1 −√
ρ1 · · · −√

ρ1
√

ρ1
R1√

ρ2
−√

ρ2 −√
ρ2 · · · −√

ρ2
√

ρ2

0 R2√
ρ3

−√
ρ3 · · · −√

ρ3
√

ρ3

0 0 R3√
ρ4

· · · −√
ρ4

√
ρ4

...
...

...
...

...
0 0 0 · · · −√

ρk
√

ρk

0 0 0 · · · Rk√
ρk+1

√
ρk+1


. (7)

Essentially the same choices of orthogonal qj for determination of uncorrelated
components Zj of ξ − u are found in Irwin (1949). See also Irwin (1942), as
well as Lancaster (1949) and Lancaster (1965) where the matrix from Irwin
(1949) is explained as a particular member of a class of generalizations of the
Helmert matrix.
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The norm of the j-th such column for j = 1, . . . , k equals
√

Rj + R2
j

ρj+1

which is
√

RjRj+1
ρj+1

, so that, for j = 1, . . . , k,

qj = 1√
RjRj+1

ρj+1

[
−√

ρ1, . . . , −√
ρj ,

Rj√
ρj+1

, 0, . . . , 0
]T

and
Zj = ξTqj with ξi = ri√

ρi

becomes

Zj =
−r1 − · · · − rj + rj+1Rj

ρj+1√
RjRj+1

ρj+1

.

This is

Zj = rj+1Rj − Rjρj+1√
RjRj+1ρj+1

or, equivalently, for j = 1, 2, . . . , k

Zj = Rj+1Rj − RjRj+1√
RjRj+1ρj+1

which are the innovations of the cumulative values Rj+1 (the standardized
error of linear prediction of Rj+1 using R1, . . . , Rj). As a consequence of the
above properties of the qj , these Zj are mean zero, uncorrelated, and of con-
stant variance 1/cn. Each of these facts also can be checked directly using
ERj = Rj and using the specified form of the covariance Cov(Rj , Rl) =
1

cn
[min(Rj , Rl) − RjRl].
As we have said, any choice of orthogonal vectors q1, . . . , qk, orthogonal to

the vector u, may be used in showing the identity (6). The advantage of the
choice (7) is the simplicity of the resulting components Z1, . . . , Zk and their
direct relationship to the cumulative distribution. Furthermore, this choice
makes these Zj match the entries of W (R − R) when W is chosen to be the
bidiagonal factor in the representation V −1 = W TW of the tridiagonal V −1.
We remark that the matrix inverse and orthonormal projection proofs of the
equivalence of the weighted norm squares of (1), (2) and (3) may also be seen
as specialization of Lemma 2 in the Appendix A concerning weighted inner
products of vectors built from partial sums.

To summarize this section, specialized to Case 1, let us point out that we
find an explicit standardization

Zj = Fn(tj+1)F (tj) − Fn(tj)F (tj+1)
cn,j

, j = 1, . . . , k, (8)
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with c2
n,j = F (tj)F (tj+1)P (Aj+1)/n. These random variables Z1, Z2, . . . , Zk

have mean 0 and variance 1 and they are uncorrelated. Moreover, the sum of
squares

k∑
j=1

Z2
j

is precisely equal to the statistics given in expressions (1) and (2). It cor-
responds to a bidiagonal Cholesky decomposition of V −1 as W TW with
B given by −F (tj+1)/cn,j for the (j, j) entries, F (tj)/cn,j for the (j, j + 1)
entries and 0 otherwise, yielding the vector Z = W (Fn − F ), where F =
(F (t1), . . . , F (tk))T , as a full standardization of the vector
Fn = (Fn(t1), . . . , Fn(tk))T .

The Zj may also be written as

Zj = Pn(Aj+1)F (tj) − Fn(tj)P (Aj+1)
cn,j

(9)

so its marginal distribution (with an hypothesized F ) comes from the tri-
nomial distribution of (nFn(tj), nPn(Aj+1)). These uncorrelated Zj , though
not independent, suggest finite-sample approximation to the distribution of∑

j Z2
j from convolution of the distributions of Z2

j rather than the asymptotic
chi-square.

Nevertheless, when t1, . . . , tk are fixed, it is clear by the multivariate cen-
tral limit theorem (for the standardized sum of the i.i.d. random variables
comprising Pn(Aj+1) and Fn(tj) from (9)) that the joint distribution of Z =
(Z1, . . . , Zk)T is asymptotically N (0, I), providing a direct path to the asymp-
totic chi-square(k) distribution of the statistic given equivalently in (1), (2)
and (3).

A reviewer has suggested to consider a limiting analogue of our decomposi-
tion into uncorrelated variables (9). By empirical process theory (van der Vaart
and Wellner (1996) or Shorack and Wellner (2009)) Yn(t) =

√
n(Fn(t) − F (t))

has the same means and covariances as the limiting Gaussian process B(t) =
W (F (t)) − F (t)W (1) which is a Brownian bridge W (τ) − τW (1) evaluated
at τ = F (t). Accordingly, our statistics

√
n[Fn(tj+1)F (tj) − F (tj+1)Fn(tj)],

j = 1, . . . , k, which equal Yn(tj+1)F (tj) − F (tj+1)Yn(tj), converge in distribu-
tion to that of

B(tj+1)F (tj) − F (tj+1)B(tj), j = 1, . . . , k

which analogously whitens the Brownian bridge.

5 Large sample estimation properties

The results of previous sections will be used to discuss asymptotic efficiency
of weighted least squares estimators related to Case 1 and Case 2 of Section
2.
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In the previous sections the distribution F was regarded as a fixed hypoth-
esized distribution. This made the choice of the matrix V for standardization
especially clear. Now, for estimation, the distribution will be regarded as a
member of a parametric family, and the choice of V is accordingly more deli-
cate.

We consider the case of i.i.d. random sample X1, . . . , Xn with distribution
function from a parametric family Fθ, θ ∈ Θ ⊆ Rp, t1 < · · · < tk, and let
Rn = R and Rn = R be as in Section 2. The vector Rn − Rn, which we
denote by (Rn −Rn)(θ), can be considered as a vector depending on the data
and the parameter. Let θ0 denote the true parameter value. If (Rn − Rn)(θ0)
converges to zero in probability Pθ0 , it is natural to use the weighted least
squares procedure for parameter estimation, so that we minimize the objective
function

Qn,V (θ) = [(Rn − Rn)(θ)]TV −1[(Rn − Rn)(θ)] (10)

for θ ∈ Θ. The matrix V for complete standardization is the covariance matrix
of √

cn(Rn − Rn) with entries Vij = Ri(1 − Rj) for i ≤ j. How we deal with
possible dependence of V on the parameter θ is discussed below. In some
situations we may use a known value of V at the true θ0 (as in Case 2, where
Vij = (ni/n)(1−nj/n)) or we may either use a consistent estimate of θ0 or use
the current parameter θ. Implications of these choices for asymptotic efficiency
are discussed.

Both cases from Section 2, i.e. fixed and random t1, . . . , tk, are considered in
the estimation context. Indeed, for Case 2 (random t1 < · · · < tk, tj = X(nj))
we have:

Rn(θ) = [Fθ(X(n1)), . . . , Fθ(X(nk))]T

Rn = [Fn(X(n1)), . . . , Fn(X(nk))]T
n

n + 1
.

The estimator in this case coincides with the estimator proposed in Swain et al.
(1988). Here only the Rn(θ) depends on θ and Fθ0(X(nj)) has a Beta(nj , n +
1 − nj) distribution and Eθ0 [Fθ0(X(nj))] = nj

n+1 = Fn(X(nj)) n
n+1 so that

Rn =
[

n1

n + 1
, . . . ,

nk

n + 1

]T

.

For Case 1 (fixed t1 < · · · < tk) we have

Rn = [Fn(t1), . . . , Fn(tk)]T , Fn(x) = 1
n

n∑
i=1

1{Xi≤x}

and
Rn(θ) = EθRn = [Fθ(t1), . . . , Fθ(tk)]T .

The estimator in this case coincides with the estimator considered in Benšić
(2015). Here only the expectation Rn(θ) depends on θ.

In both cases, the convergence in probability Pθ0 of (Rn −Rn)(θ0) to zero
is a consequence of the form of the variances of the mean zero differences,
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which are (1/n)Rj(1 − Rj) in Case 1 and (1/(n + 2))Rj(1 − Rj) in Case 2, in
accordance with expression (4).

In both cases we will assume that Fθ(t) and its gradient ∂
∂θFθ(t) are con-

tinuous. Additional regularity assumptions from cited literature may arise in
the discussion below.

There are some differences in the analysis of estimation properties for the
two mentioned cases. Let us discuss them separately.

Case 1. For the fixed t1 < · · · < tk, Fθ = (Fθ(t1), . . . , Fθ(tk))T and Fn =
(Fn(t1), . . . , Fn(tk))T we can express the function (10) as

Qn,V (θ) = (Fn − Fθ)TV −1(Fn − Fθ).

Denote by Vθ the covariance matrix of
√

n(Fn − Fθ) which, as we know, has
entries Fθ(ti)(1 − Fθ(tj)) for i ≤ j. Note here that Vθ depends on the param-
eter. This leads first to the objective function Qn(θ) = Qn,Vθ

(θ). Equation
(6) from Section 3 then guarantees that minimizing this function Qn,Vθ

(θ)
leads to the classical Pearson minimum chi-square estimator (see e.g. Hsiao
(2006) for its best asymptotically normal (BAN) distribution properties and
see also Amemiya (1976), Berkson (1949), Berkson (1980), Bhapkar (1966),
Fisher (1924), Taylor (1953) for more about minimum chi-square estimation).

Estimation in this case can also be set in the framework of the generalized
method of moments (GMM), with alternative choices of the covariance for
standardization. Indeed, if we use a fixed V or we use Vθ⋆ where θ⋆ is a
consistent estimator of the true parameter value instead of Vθ in the function
Qn,V (θ), then, as shown in Benšić (2015), this estimation procedure can be
seen as a GMM procedure.

Let θ̂k,n denote the estimator obtained by minimization of the function
Qn,Vθ⋆ (θ). Refining the notation from Section 2:

Ai = (ti−1, ti], i = 1, . . . , k, Ak+1 = (tk, ∞),
Pn(Ai) = Fn(ti) − Fn(ti−1),
P ⋆(Ai) = Fθ⋆(ti) − Fθ⋆(ti−1),
P (Ai;θ) = Fθ(ti) − Fθ(ti−1)
Pθ0(Ai) = Fθ0(ti) − Fθ0(ti−1),

from the tridiagonal form of the weighting matrix and equation (6) we see that

θ̂k,n = argmin
θ∈Θ

k+1∑
i=1

(Pn(Ai) − P (Ai;θ))2

P ⋆(Ai)
. (11)

If classical regularity assumptions of the generalized method of moments the-
ory are fulfilled (see e.g. Newey and McFadden (1994), Harris and Matyas
(1999)) it is shown in Benšić (2015) that lim

n
[nVar(θ̂k,n)] has inverse GT

θ0
V −1
θ0

Gθ0

where Gθ0 and Vθ0 are, respectively, the Jacobian matrix ∂
∂θ [Fθ(t1), . . . , Fθ(tk)]T

and the covariance matrix of
√

n[Fn(t1), . . . , Fn(tk)]T evaluated at the true pa-
rameter value θ0.
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It is fruitful to examine the quantity GT
θV

−1
θ Gθ and how it simplifies.

Using Lemma 2 in the Appendix A, with A and B chosen as columns of Gθ

and ρi = Pθ(Ai) = Fθ(ti) − Fθ(ti−1), the tridiagonal form of V −1
θ allows

simplification of GT
θV

−1
θ Gθ to see that it equals

IT (θ) =
k+1∑
j=1

1
Pθ(Aj)

[ ∂

∂θ
Pθ(Aj)][ ∂

∂θ
Pθ(Aj)]T (12)

which one recognize to be the Fisher information of a multinomial with prob-
abilities Pθ(Aj), j = 1, . . . , k + 1. The interpretation is that, when restricted
to the multinomial counts in the partition formed by T , the GMM procedure
(here shown to be related to the minimum chi-square) inherits the asymptotic
efficiency for that multinomial setting. The relative efficiency using a fixed
partition T compared to the full data situation is given, in the scalar parame-
ter case, by the ratio of IT (θ)/I(θ) where I(θ) =

∫ 1
f(x,θ) ( ∂

∂θ f(x, θ))2 dx is the
full Fisher information.

For additional understanding of the inverse of lim
n

[nVar(θ̂k,n)] suppose the
model has a differentiable density f(x,θ) satisfying the classical regularity,
and let S(x) = ∂

∂θ log f(x,θ)|θ0 be the population score function evaluated at
the true parameter value. Now we have

Gθ0 =

 [Eθ0(S1(−∞,t1])]T
...

[Eθ0(S1(−∞,tk])]T


and

GT
θ0
V −1
θ0

Gθ0 =
k+1∑
i=1

1
Pθ0(Ai)

ti∫
ti−1

S(x)f(x;θ0) dx

ti∫
ti−1

ST (x)f(x;θ0) dx

=
k+1∑
i=1

Pθ0(Ai)

ti∫
ti−1

S(x)f(x;θ0) dx

Pθ0(Ai)

ti∫
ti−1

ST (x)f(x;θ0) dx

Pθ0(Ai)

=
k+1∑
i=1

Pθ0(Ai)Eθ0 [S(X)|Ai]Eθ0 [S(X)|Ai]T .

This can be interpreted as a Riemann-Stieltjes discretization of the Fisher
information which arises in the limit of large k. So the GMM in this determin-
istic partition procedure is fully efficient in the limit as first n → ∞ and then
k → ∞.

Let us note the similarity of θ̂k,n and the minimum chi-square estimator.
From (11), we see that they differ only in the denominator, so we can interpret
θ̂k,n as a modified minimum chi-square. It is well known that various minimum
chi-square estimators are in fact generalized least squares (see e.g. Amemiya
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(1976), Harris and Kanji (1983), Hsiao (2006)) and BAN estimators. Likewise,
the norm square of standardizing the empirical distribution has been known
to also provide a generalized least squares estimator. Here we give a clear and
simple way that summarize these findings through the complete standardiza-
tion of the empirical distribution.

Case 2. In this case we have tj = X(nj) so that the value Rj = Fn(tj) = nj/n
is predetermined. The random part within Qn,V (θ) is Rj(θ) = Fθ(X(nj))
which we note depends on the parameter. Nevertheless, the covariance matrix
V in this case has constant entries Vjl = (nj/n)(1 − nl/n) for j ≤ l. Now, the
results summarized in Sections 3 (see also Swain et al. (1988)) enable us to
represent the minimizer of the function Qn,V (θ) as

θ̂ = argmin
θ∈Θ

k+1∑
i=1

((Fθ(X(ni)) − Fθ(X(ni−1))) − ni−ni−1
n+1 )2

ni−ni−1
n+1

. (13)

As it was mentioned in Swain et al. (1988), page 276, based on practice, there is
“a weight matrix which yields fits to empirical CDFs that are usually superior
in many respects” to the estimator (13). Nowadays, this can be explained
in the view of the generalized spacing estimator (GSE) (see Ghosh and Rao
Jammalamadaka (2001), Cheng and Amin (1983), Ranneby (1984)). To discuss
this, let us suppose for simplicity that all data are different and k = n so that
the estimator can be easily recognized as the GSE. Namely, if ni − ni−1 = 1
then

Qn(θ) = (n + 2)(n + 1)
n+1∑
i=1

(
(Fθ(X(ni)) − Fθ(X(ni−1))) − 1

n + 1

)2

.

Obviously,

θ̂n = argmin
θ∈Θ

n+1∑
i=1

(Fθ(X(ni))−Fθ(X(ni−1)))2 =
n+1∑
i=1

h(Fθ(X(ni))−Fθ(X(ni−1))),

(14)
where h(t) = t2. Detailed discussion about conditions for consistency and
asymptotic normality for this type of estimator the interested reader can find
in Ghosh and Rao Jammalamadaka (2001). If we apply these results with
h(t) = t2 it comes out that we face a lack of BAN distribution properties with
θ̂n. To illustrate this, let us suppose, for simplicity, that θ = θ is a scalar.
Theorem 3.2 from Ghosh and Rao Jammalamadaka (2001) gives necessary
and sufficient condition on h to generate a GSE with minimum variance for
a given class of functions which includes h(t) = t2. It is stated there that the
asymptotic variance of a GSE is minimized with h(t) = a log t + bt + c where
a, b and c are constants. Based on the results formulated in Theorem 3.1 from
the same paper, it is also possible to calculate the asymptotic variance of the
GSE for the given function h under some regular conditions on the population
density. Thus, for h(t) = t2, the expression (9) in Theorem 3.1 from Ghosh
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and Rao Jammalamadaka (2001) is equal to 2. This means that asymptotic
variance of our estimator (under mild conditions on the population density) is

2
I(θ0) , where I(θ0) denotes the Fisher information. So, for these cases, θ̂n from
(14) is not BAN. It is only 50% efficient asymptotically.

However, it is possible to reach the BAN distribution property for Case
2 and k = n through an iterative procedure which includes a modification
of the denominator in (13) in each step. For simplicity let us discuss the one-
dimensional parameter case. Also assume that the density function fθ(x) exists
and has Fisher information I(θ) =

∫
fθ(x)( ∂

∂θ log fθ(x))2 dx that is a bounded
function of θ.

1. Let

Qn(θ, θ′) =
n+1∑
i=1

(Fθ(X(i)) − Fθ(X(i−1)) − 1
n+1 )2

Fθ′(X(i)) − Fθ′(X(i−1))
. (15)

2. Let θ⋆ be a consistent estimator for real θ.
3.

θ1 = θ⋆

θj+1 = argmin
θ

Qn(θ, θj), j = 1, 2, . . .

The use of the denominator Fθ′(X(i)) − Fθ′(X(i−1)) in (15) rather than the
expected value (ni −ni−1)/(n+1) at the true parameter value is a hybrid that
allows to adapt to distribution variability at the most recent parameter value.

To show the desired properties, let us fix the data set x1, . . . , xn for a given
sample size n and denote here:

Fθ = [Fθ(x(1)), . . . , Fθ(x(n))]T , Gθ = ∂

∂θ
[Fθ(x(1)), . . . , Fθ(x(n))]T ,

and

Vθ =


Fθ(x(1))(1 − Fθ(x(1))) Fθ(x(1))(1 − Fθ(x(2))) · · · Fθ(x(1))(1 − Fθ(x(n)))
Fθ(x(1))(1 − Fθ(x(2))) Fθ(x(2))(1 − Fθ(x(2))) · · · Fθ(x(2))(1 − Fθ(x(n)))

...
...

...
...

Fθ(x(1))(1 − Fθ(x(n))) Fθ(x(2))(1 − Fθ(x(n))) · · · Fθ(x(n))(1 − Fθ(x(n)))

 .

We take advantage of the fact that the Qn(θ, θ′) can also be expressed by
the tools we have developed. The 1

n+1 in the definition of Qn(θ, θ′) provides
the difference in consecutive entries of the vector R with entries Rj = j

n+1 ,
j = 1, . . . , n. Thus, it holds that

Qn(θ, θ′) = (Fθ − R)T
V −1

θ′ (Fθ − R) .

As in the Gauss-Newton method for nonlinear least squares, here we consider
the following quadratic approximation θ 7→ Q̂n(θ, θj),

Q̂n(θ, θj) =
(
Fθj + Gθj (θ − θj) − R

)T
V −1

θj

(
Fθj + Gθj (θ − θj) − R

)
,
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of the function θ 7→ Qn(θ, θj) = (Fθ − R)T
V −1

θj
(Fθ − R) about the point θj .

Instead of solving the nonlinear optimization problem minθ Qn(θ, θj), in
every iteration j = 1, 2, . . . we solve the simpler quadratic minimization prob-
lem minθ Q̂n(θ, θj), that has explicit solution

argmin
θ

Q̂n(θ, θj) = θj +
(
GT

θj
V −1

θj
Gθj

)−1
GT

θj
V −1

θj

(
R − Fθj

)
.

Then the corresponding iterative procedure is given by

θj+1 = θj +
(
GT

θj
V −1

θj
Gθj

)−1
GT

θj
V −1

θj

(
R − Fθj

)
, j = 1, 2, . . . . (16)

This is an iterative algorithm for computation of the estimate.
Generally, it is not easy to obtain conditions that guarantee, for given

data, the convergence of the sequence (θj), indexed by the iteration number j.
Nevertheless, if θj converges, the differences θj+1 − θj converges to zero, and
then, provided GT

θj
V −1

θj
Gθj is bounded, it follows that

GT
θj
V −1

θj

(
R − Fθj

)
→ 0.

Since the function θ 7→ GT
θ V

−1
θ (R − Fθ) is continuous, the limit of the se-

quence (θj) is a solution of the equation

GT
θ V

−1
θ (R − Fθ) = 0. (17)

As for the matter of the boundedness of GT
θ V

−1
θ Gθ (used in the identifi-

cation of this algorithmic limit) we again find that it equals

n+1∑
i=1

(
∂

∂θ (Fθ(x(i)) − Fθ(x(i−1)))
)2

Fθ(x(i)) − Fθ(x(i−1))

which is the Fisher information IT (θ) as in (12) but now it is based on the
partition T = {x(1), x(2), . . . , x(n)} formed by the data. In general, IT (θ) ≤
I(θ) (as confirmed in Appendix B) and this bound holds uniformly over all data
x1, . . . , xn. We assumed I(θ) to be a bounded function of θ. Thus, GT

θj
V −1

θj
Gθj

is bounded and hence, if (θj) is convergent, the limit of the algorithm satisfies
(17).

On the other hand, let us consider the function

S(θ) =
n+1∑
i=1

h(Fθ(x(i)) − Fθ(x(i−1))), (18)

where h(t) = log t. It has gradient

S ′(θ) =
n+1∑
i=1

∂
∂(θ) Fθ(x(i)) − ∂

∂(θ) Fθ(x(i−1))
Fθ(x(i)) − Fθ(x(i−1))

,
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which is the same as

n+1∑
i=1

∂
∂(θ) Fθ(x(i)) − ∂

∂(θ) Fθ(x(i−1))
Fθ(x(i)) − Fθ(x(i−1))

[
1

n + 1
− (Fθ(x(i)) − Fθ(x(i−1)))

]
.

Using the form of V −1
θ we find (again using Lemma 2 in Appendix A) this is

the same as
S ′(θ) = GT

θ V
−1

θ (R − Fθ) ,

i.e. the condition S ′(θ) = 0 is exactly the same as equation (17).
Finally, for arbitrary data, this argument shows the following: if the se-

quence (θj) given by (16) is convergent, then it converges to a stationary point
of the function θ 7→

∑n+1
i=1 h(Fθ(x(ni)) − Fθ(x(ni−1))), where h(t) = log t. In

the case of a unique stationary point, this estimator is same as the generalised
spacings estimator with the statistically efficient choice of h. The analysis here
may be interpreted as linking the iterative algorithm (16) with the iteratively
reweighed least squares interpretation of optimization of the log-probability
criterion.

Here, Qn(θ, θ⋆) and the choice of Vθ⋆ are algebraically the same functions
as described in Case 1 if we intentionally chose fixed tj to be the same as x(nj)
and behave as if we were in Case 1.

Thus, for both the fixed and empirical quantile choices of partition, we
have estimation motivated by minimizing of the norm square of standardized
empirical discrepancies between empirical and theoretical distributions, which
have the same asymptotic efficiencies as optimization of log-probability criteria
motivated by likelihood.

6 Conclusion

In previous work Benšić (2014) showed by simulations that fully standardizing
the cumulative distribution produces estimators that are superior to those that
minimize the Cramer-Von Mises and Anderson-Darling statistics. Now, as a
result of the presented perspective, we make it easy to understand that this
means advocacy of minimum chi-square estimators as superior to estimators
based on minimum distance between (unstandardized) cumulative distribu-
tions.

We gave here the common framework in which, for both fixed t1, . . . , tk

and quantiles ti = X(ni), the form of the covariance of (Fn(ti) − F (ti), i =
1, . . . , k) assures a simple relationship to chi-square statistics. However, we
caution that, when using all the empirical quantiles (k = n, ni = i, ti = X(i)),
the standardized (F (X(i))− i

n+1 , i = 1, . . . , n) is not shown to have an effective
norm square for estimation, being only 50% efficient, when the standardization
is based on the covariance at the true parameter value. A modified chi-square
like formulation is given for the empirical quantiles that is fully efficient.
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As noted in Section 4, the fully standardized cumulative distribution statis-
tic Z = (Z1, . . . , Zk) is asymptotically N (0, I). Thus the asymptotic distri-
bution of Z does not depend on the hypothesized distribution F (that is,
it is asymptotically distribution free), unlike the vector of k + 1 components√

n(Pn(A) − P (A))/
√

P (A) whose (asymptotic) distribution depends in par-
ticular on the vector of components

√
P (A) to which it is orthogonal. As Z

is asymptotically distribution-free, it is akin to the test statistic components
studied in Khmaladze (2013). A difference is that there the objective was to
provide a class of such asymptotically distribution-free statistics for discrete
settings whereas our objective is to clarify understanding of the fully stan-
dardized cumulative distribution for improved efficiency of estimation.

Acknowledgments. We are very grateful to anonymous reviewers for pro-
viding many excellent comments, which enhanced the quality of this article.

Appendix A

Lemma 1 Let k be a fixed integer and ρ be vector in Rk+1, such that ρi > 0
for 1 ≤ i ≤ k + 1 and

∑k+1
i=1 ρi = 1. Let R be the vector in Rk with entries

Rj =
∑j

i=1 ρi, j = 1, . . . , k. Let V be the symmetric k×k matrix with entries

Vjl = Rj(1 − Rl), j ≤ l.

Then V −1 has the tridiagonal form

V −1 =



1
ρ1

+ 1
ρ2

− 1
ρ2

0 · · · 0 0
− 1

ρ2
1

ρ2
+ 1

ρ3
− 1

ρ3
· · · 0 0

0 − 1
ρ3

1
ρ3

+ 1
ρ4

· · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1

ρk−1
+ 1

ρk
− 1

ρk

0 0 0 · · · − 1
ρk

1
ρk

+ 1
ρk+1


.

Proof. Firstly, let us show that V V −1 = V −1V = I. Since V is sym-
metric, it is enough to show V V −1 = I. In order to do this, note that for
j = 1, . . . , k we have

(
V V −1)

j,j
=

k∑
s=1

Vj,sV −1
s,j

= −Rj−1(1 − Rj−1) 1
ρj

+ Rj(1 − Rj)
(

1
ρj

+ 1
ρj+1

)
−

− Rj(1 − Rj+1) 1
ρj+1

= 1,
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where R0 = 0 and Rk+1 = 1. Similarly, for 1 ≤ j < l ≤ k, we have

(
V V −1)

j,l
=

k∑
s=1

Vj,sV −1
s,l

= −Rl−1(1 − Rl)
1
ρl

+ Rl−1(1 − Rl−1)
(

1
ρl

+ 1
ρl+1

)
−

− Rl(1 − Rl+1) 1
ρl+1

= 0.

�

Lemma 2 Let k be a fixed integer and a, b and ρ be vectors in Rk+1, with
entries aj, bj and ρj, j = 1, . . . , k + 1 respectively, such that:

1.
∑k+1

i=1 ai = 0,
2.

∑k+1
i=1 bi = 0,

3. ρi > 0 for 1 ≤ i ≤ k + 1 and
∑k+1

i=1 ρi = 1.

Let A, B and R be the vectors in Rk with entries

Aj =
j∑

i=1
ai, Bj =

j∑
i=1

bi, Rj =
j∑

i=1
ρi, j = 1, . . . , k.

Let V be the symmetric k × k matrix with entries

Vjl = Rj(1 − Rl), j ≤ l.

Then

ATV −1B =
k+1∑
i=1

aibi

ρi
. (19)

Proof. Similar as in Section 3, the proof can be done by matrix manip-
ulation as well as from the geometrical perspective of orthogonal projection.
Here we show the second approach.

Let us denote

α = [a1/
√

ρ1, . . . , ak+1/
√

ρk+1]T ,
β = [b1/

√
ρ1, . . . , bk+1/

√
ρk+1]T and

u = [√ρ1, . . . ,
√

ρk+1]T .

These have αTu =
∑

i(ai/
√

ρi)
√

ρi =
∑

i ai = 0 and likewise βTu =
∑

i βi =
0 so they are orthogonal to u. Accordingly αTβ =

∑k
j=1 α̃j β̃j where α̃j =

αTqj and β̃j = βTqj where q1, . . . , qk are orthonormal vectors in Rk+1, or-
thogonal to u. Using the choice of these qj as in Section 4 we find

α̃j = −Aj + αj+1Rj/ρj+1√
RjRj+1/ρj+1
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and
β̃j = −Bj + βj+1Rj/ρj+1√

RjRj+1/ρj+1
.

Now, using αj+1 = Aj+1 − Aj for j < K and αk+1 = 0 − Ak, we see that
α̃ = W TA and β̃ = W TB with bidiagonal W . The result then follows upon
confirming WW T = V −1.

In order to show that WW T = V −1, let us point out that, for j = 1, . . . , k,

(
W TW

)
j,j

=
R2

j−1

Rj−1Rjρj
+

R2
j+1

RjRj+1ρj+1
= 1

ρj
+ 1

ρj+1
,

for j = 1, . . . , k − 1 we have(
W TW

)
j,j+1 = − Rj+1Rj√

RjRj+1ρj+1
√

RjRj+1ρj+1
= − 1

ρj+1
,

and, finally, for l ≥ j + 2,
(
W TW

)
j,l

= 0. Since both of matrices W TW and
V −1 are symmetric, the identity W TW = V −1 holds.

�

Appendix B

Here we discuss the Fisher information result IT (θ) ≤ I(θ) for the partition
formed by any T . This can be seen as a consequences of the general chain rule
of the Fisher information IX,Y (θ) = IY (θ) + IX|Y (θ) by specializing to the
case that Y = g(X) is a function of X. Indeed, then IY (θ) ≤ IX,Y (θ) = IX(θ).
In our case, where T = {t1, . . . , tk} with t1 < t2 < · · · < tk, the function g is
given by g(x) = j for tj−1 < x ≤ tj . This function provides the membership
label of x in the partition formed by T . It is recognized that, to handle this
case, one needs IX,Y (θ) for jointly distributed X, Y even when X is continuous
and Y is discrete. The inequality IT (θ) ≤ I(θ) is seen to hold for any partition
T , including the case that T is based on a data set (via empirical quantiles).

Concerning the chain rule of Fisher information in the twice differen-
tiable case, it is an immediate consequence of the factorization fθ(x, y) =
fθ(y)fθ(x|y) by taking expectation of

∂2

∂θ2 log fθ(x, y) = ∂2

∂θ2 log fθ(y) + ∂2

∂θ2 log fθ(x|y),

taking advantage of representation of the respective Fisher informations IX,Y (θ),
IY (θ) and IX|Y (θ) as minus the expected values of the terms in this identity.

Alternatively, in the squared first derivative representation, the chain rule
is seen as the Pythagorean identity associated with the L2 projection property

∂

∂θ
log fθ(y) = Eθ[ ∂

∂θ
log fθ(X, Y )|Y = y]. (20)
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Indeed, the right side is∫
fθ(x, y)
fθ(y)

[
∂

∂θ
log fθ(x, y)

]
dx = 1

fθ(y)

∫
∂

∂θ
fθ(x, y) dx =

∂
∂θfθ(y)
fθ(y)

provided the derivative can be exchanged with the integral as indicated. Then
the chain rule is the expected value in expansion of the square of

∂

∂θ
log fθ(x, y) = ∂

∂θ
log fθ(y) + ∂

∂θ
log fθ(x|y),

as in Zamir (1998). Thus IX,Y (θ) = IY (θ) + IX|Y (θ) and hence IY (θ) ≤
IX,Y (θ). When Y is a function of X we have IX,Y (θ) = IX(θ) and hence
one has the “data processing” inequality IY (θ) ≤ IX(θ), as claimed. It is also
Jensen’s inequality applied to (20), as in (Ibragimov and Has’minskii, 1981,
Theorem I.7.2).
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